src#

Submodules#

Functions#

cluster_data(capacity_factor_path, ...)

new_list(length, output_file)

Generates a list of integers from 1 to the specified length, saves it as a CSV file, and returns the output file path. Used to update timeslice and daytype.

CFandSDP(input_file, representative_days, ...[, operation])

conversionlts(blocks_per_day, ...)

conversionld(timeslices, representative_days, output_file)

conversionlh(timeslices, blocksperday, output_file)

conversionldc(chronological_sequence, ...)

yearsplit(timeslices, representative_days, ...)

daysindaytype(representative_days, ...)

new_yaml_param(yaml_file, param_name, new_value)

run_simulation(case_info)

copy_and_rename(results_case, ...)

intraday_kotzur(conversion_path, storage_path, ...)

intraday_welsch(storage_path, blocksperday, ...)

intraday_welsch2(storage_path, blocksperday, ...)

read_csvfile(path)

graph(file_base, file_kotzur, file_kotzur_intraday, ...)

table(→ None)

Package Contents#

src.cluster_data(capacity_factor_path, demand_profile_path, n_clusters)[source]#
src.new_list(length: int, output_file: str | pathlib.Path)[source]#

Generates a list of integers from 1 to the specified length, saves it as a CSV file, and returns the output file path. Used to update timeslice and daytype.

Parameters:
  • length (int) -- The number of integers to include in the list.

  • output_file (str) -- The file path where the CSV will be saved.

Returns:

The path to the output CSV file.

Return type:

str

The generated CSV will contain a single column named 'VALUE' with integers from 1 to 'length' (inclusive).

src.CFandSDP(input_file, representative_days, hour_grouping, output_file, operation='mean')[source]#
src.conversionlts(blocks_per_day, chronological_timeslices, timeslices, chronological_sequence, representative_days, output_file)[source]#
src.conversionld(timeslices, representative_days, output_file, label='DAYTYPE')[source]#
src.conversionlh(timeslices, blocksperday, output_file)[source]#
src.conversionldc(chronological_sequence, representative_days, days_in_year, output_file)[source]#
src.yearsplit(timeslices, representative_days, chronological_sequence, days_in_year, output_file)[source]#
src.daysindaytype(representative_days, chronological_sequence, output_file)[source]#
src.new_yaml_param(yaml_file, param_name, new_value)[source]#
src.run_simulation(case_info)[source]#
src.copy_and_rename(results_case, results_destination_folder, new_results_filename)[source]#
src.intraday_kotzur(conversion_path, storage_path, storage_level_start, output_path)[source]#
src.intraday_welsch(storage_path, blocksperday, timeslices, representative_days, output_path)[source]#
src.intraday_welsch2(storage_path, blocksperday, timeslices, representative_days, chronological_sequence, storage_level_start, output_path)[source]#
src.read_csvfile(path)[source]#
src.graph(file_base, file_kotzur, file_kotzur_intraday, file_cluster, file_niet, file_welsch, file_welsch_intraday, representative_days, blocks_per_day, file_yearsplit)[source]#
src.table(sim_results_path: str, sol_path: str, scenario_name: str, model: str, new_capacity_path: str, new_storage_capacity_path: str, filter_val1: str, filter_val2: str, excel_path: str) None[source]#